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1 Project Description

The XVis project brings together the key elements of research to enable scientific discovery at 
extreme scale. Scientific computing will no longer be purely about how fast computations can be 
performed. Energy constraints, processor changes, and I/O limitations necessitate significant 
changes in both the software applications used in scientific computation and the ways in which 
scientists use them. Components for modeling, simulation, analysis, and visualization must work 
together in a computational ecosystem, rather than working independently as they have in the past. 
This project provides the necessary research and infrastructure for scientific discovery in this new 
computational ecosystem by addressing four interlocking challenges: emerging processor 
technology, in situ integration, usability, and proxy analysis.

Emerging Processor Technology One of the biggest recent changes in high-performance 
computing is the increasing use of accelerators. Accelerators contain processing cores that 
independently are inferior to a core in a typical CPU, but these cores are replicated and grouped 
such that their aggregate execution provides a very high computation rate at a much lower power. 
Current and future CPU processors also require much more explicit parallelism. Each successive 
version of the hardware packs more cores into each processor, and technologies like 
hyperthreading and vector operations require even more parallel processing to leverage each 
core’s full potential.

XVis brings together collaborators from the predominant DOE projects for visualization on 
accelerators and combines their respective features in a unified visualization library named VTK-
m. VTK-m will allow the DOE visualization community, as well as the larger visualization 
community, a single point to collaborate, contribute, and leverage massively threaded algorithms. 
The XVis project is providing the infrastructure, research, and basic algorithms for VTK-m, and 
we are working with the SDAV SciDAC institute to provide integration and collaboration 
throughout the Office of Science.

In Situ Integration Fundamental physical limitations prevent storage systems from scaling at the 
same rate as our computation systems. Although large simulations commonly archive their results 
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before any analysis or visualization is performed, this practice is becoming increasingly 
impractical. Thus, the scientific community is turning to running visualization in situ with 
simulation. This integration of simulation and visualization removes the bottleneck of the storage 
system.

Integrating visualization in situ with simulation remains technically difficult. XVis leverages 
existing in situ libraries to integrate flyweight techniques and advanced data models to minimize 
resource overhead. Within our in situ visualization tools, XVis integrates existing visualization 
algorithms and those incorporating emerging processor technology. XVis also studies the latest 
techniques for new domain challenges and for post hoc interaction that reconstructs exploratory 
interaction with reduced data.

Usability A significant disadvantage of using a workflow that integrates simulation with 
visualization is that a great deal of exploratory interaction is lost. Post hoc techniques can recover 
some interaction but with a limited scope or precision. Little is known about how these 
limitations affect usability or a scientist’s ability to form insight. XVis performs usability studies 
to determine the consequences of in situ visualization and proposes best practices to improve 
usability.

Unlike a scalability study, which is always quantitative, XVis’ usability studies are mostly 
qualitative. Our goal is not to measure user performance; rather, we want to learn about the 
limitations and benefits of incorporating in situ methods in scientists’ workflows. These studies 
reveal how the simulation, hardware, and users respond to a particular design and setting.

Proxy Analysis The extreme-scale scientific-computation ecosystem is a much more complicated 
world than the largely homogeneous systems of the past. There is significantly greater variance in 
the design of the accelerator architecture than is typical of the classic x86 CPU. In situ
visualization also yields complicated interactions between the simulation and visualization that 
are difficult to predict. Thus, the behavior observed in one workflow might not be indicative of 
another.

To better study the behavior of visualization in numerous workflows on numerous systems, XVis 
builds proxy applications that characterize the behavior before the full system is run. We start 
with the design of mini-applications for prototypical visualization operations and then combine 
these with other mini-applications to build application proxies that characterize the behavior of 
larger systems. The proxy analysis and emerging processor technology work are symbiotic. The 
mini-applications are derived from the VTK-m implementations, and the VTK-m design is 
guided by the analysis of the mini-applications.

2 Progress Report

The XVis research plan specified in the proposal is divided into a set of milestones spread over 
the 3-year period of the project, divided among the projects research areas, and distributed among 
the participating institutions. Our report is similarly organized by giving progress on each of these 
milestones. Our report is abbreviated to include only those milestones with relevant work in the 
time period of this report.

2.1 Emerging Processors

Milestone 1.a, Initial VTK-m Design (Year 1–SNL, Kitware, ORNL, LANL) Provide the 
research and design for VTK-m functional operation and, in conjunction with SDAV, 
develop an initial implementation.



Expected Completion: FY15, Q4 Status: In progress

The VTK-m prototype is central to many of the activities in XVis. As such, a significant portion 
of the work in the early part of the project is dedicated to this milestone, and we have made a 
significant amount of progress.

We have established a central git repository hosted by Kitware. The URL for the repository is 
http://public.kitware.com/vtkm.git. We have established several procedures for managing the 
collaborative development of the project. This includes a weekly developers meeting to 
coordinate and communicate, a system of design documents (listed at 
http://m.vtk.org/index.php/Design_Documents), a branchy development workflow for 
coordinating concurrent contributions (http://m.vtk.org/index.php/Contributing_to_VTK-m), a set 
of coding conventions, and a large set of regression tests run nightly (reported at 
https://open.cdash.org/index.php?project=VTKM).

The basic foundations for VTK-m including the build system, package structure, and fundamental 
classes are implemented. VTK-m now includes a generic device adapter that implements the 
basic data parallel primitives and provides performance portability. VTK-m currently has 
implementations for a CUDA device and a serial device for debugging purposes.

VTK-m has a generic array interface that provides a single interface for direct access to data of 
any type made possible with static templating. This generic array interface simplifies zero-copy 
interfaces to other data structures. VTK-m also has a dynamic array wrapper that helps with 
handling data whose type is not known until compile time.

The mechanism for building and executing worklets is available. The mechanism is flexible in 
that it is straightforward to define new worklet algorithms, new worklet types, and new data 
handling mechanisms.

We have also begun to develop filters within VTK-m, which implement specific visualization 
algorithms using the VTK-m arrays, worklets, and device adapter algorithms. The first such 
algorithm to be developed was isosurface (for structured 3D grids, using Marching Cubes). Cut 
surface and threshold filters can also be constructed using the same core algorithm. Several 
variants of the algorithm have been developed in order to optimize and evaluate performance and 
memory usage using techniques such as fusing cells, slicing the data set, and parallelizing over 
the output triangles rather than the input voxels. As the infrastructure for data models further 
develops, and as new worklet types are introduced into VTK-m, the isosurface algorithm will co-
evolve with them, becoming more efficient and versatile (supporting other data types). A variety 
of statistical analysis algorithms, making use of device adapter algorithms such as reduce and 
scan, have also been implemented, including a histogram filter and a filter for first, second, and 
third moment calculations. In addition to the aforementioned filters, which have been 
implemented based on standard existing algorithms, novel data-parallel algorithms are also being 
designed in collaboration with Hamish Carr from the University of Leeds for computing contour 
trees, which encode the topological changes that occur to the contour as the isovalue ranges 
between its minimum and maximum values.

The base VTK-m data model is in place, though still experimental, and will be moved to the 
master VTK-m branch after further hardening and additional features are added. It is built around 
the basic array interfaces and other infrastructure in VTK-m, and supports both regular and 
irregular grid topologies. A worklet mapping between topological elements in these grids is also 
in a working, but experimental, state, and will form the basis for a number of visualization and 
analysis algorithms.

In conjunction with the SDAV SciDAC institute, the VTK-m development team had a design 
review with engineers from NVIDA on March 4-5 for running VTK-m on CUDA-capable cards. 
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Highlights of the meeting include suggestions to introduce CUDA asynchrony/streaming, texture 
memory, layouts for unstructured mesh connectivity, and the possibilities of JIT compiling. In 
response to this review we have implemented texture memory support, and investigated better 
scheduling strategies for the CUDA device adapter, both of which improve performance.

To enable broad sharing of our code, we have received approval to assert copyright on our early 
implementation of VTK-m. VTK-m is officially released with a BSD 3-clause license.

Our VTK-m development effort is also focused on providing documentation to make our library 
accessible. We are maintaining a User’s Guide with detailed information on using the features 
currently available in VTK-m. The current version of the VTK-m User’s Guide is available from 
the VTK-m Wiki (http://m.vtk.org/images/c/c8/VTKmUsersGuide.pdf).

2.2 In Situ

Milestone 2.a Expand Data Models (Year 1–ORNL, Kitware) Expand visualization data 
models to encompass broader scope from new science domains.
Expected Completion: FY15, Q3 Status: In progress

As mentioned above, the basic VTK-m data model is in progress. As built, it already includes 
some advanced features necessary to support in situ analysis and modern architectures and 
simulation codes. Specifically, initial heterogeneous memory space support is available through 
the VTK-m array interfaces, and this array infrastructure has zero-copy support. The VTK-m data 
model also supports mesh features that were challenging in traditional data models, such as 
mixed-topology meshes, and is generally more flexible, leading to greater efficiency.

Milestone 2.b Post Hoc Interaction (Year 1–U Oregon) Implement three algorithms that 
use extreme-scale features such as non-volatile memory or knowledge of 
communication efficiencies.
Expected Completion: FY15, Q4 Status: In progress

We have made good progress on two of the three algorithms. The first involves using SSDs to do 
more effective compression by considering temporal compression. We have been using wavelets, 
and have a study in progress. The second algorithm involves understanding the performance 
limits of VTK-m's data-parallel primitives approach. We have considered both surface rendering 
and volume rendering and have observed performance comparable with community standards. 
We plan to do a further study on what performance we are missing out on by being hardware 
agnostic, and expect this to be completed by on time for the milestone.

Finally, we would like to delay the third algorithm until Year 2, when more architectures will be 
available (NVLINK, Knight's Landing) so we can do a study on deep memory hierarchies. This 
delay is consistent with UO's underspending of the budget.

Milestone 2.c Flyweight In Situ (Year 2–Kitware) Provide flyweight in situ visualization 
techniques into a feature-rich, general-purpose library.
Expected Completion: FY16, Q4 Status: In progress

Kitware has been investigating using non-standard memory layouts for arrays and data structures. 
VTK now has the concept of a MappedDataArray and MappedDataSet, which allow for custom 
memory layouts. Using STL-style iterators we allow complex algorithms to operate on iterators 
for mapped data arrays while continuing to use efficient raw memory access for standard VTK 
data arrays. While the main objective of these changes was to allow for tight coupling of VTK in 
situ with simulations, they also allow for things such as constant value arrays, implicit point 
arrays, and other efficient data model concepts that VTK-m also has. This work could be the 
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foundation for allowing VTK-m’s data model to be used efficiently and seamlessly inside VTK 
with no memory copies.

2.3 Usability

Milestone 3.a Develop Techniques to be Studied (Year 1–UC Davis) Identify existing and 
new visualization techniques to be studied. Revise existing ones and implement new 
ones as needed.
Expected Completion: FY15, Q4 Status: In progress

During this period, the UC Davis team has been pursuing two independent studies. In one study, 
we aim to evaluate the usability of VTK-m, a fine-grain parallel programming library, for 
realizing visualization operations. We have first implemented two volume rendering algorithms: 
ray-casting and cell projection  in Dax because VTK-m is not in its full configuration. The 
rendering performance achieved on NVIDIA GPU has not been satisfactory so we are still in the 
process  of optimizing several aspects of data access and calculations. After the performance 
becomes acceptable, we will then test the implementations on Intel Xeon Phi processors using the 
testbed available at NERSC. We hope this experience will help us also create and evaluate some 
in situ visualization solutions in VTK-m.

In the second study, we are developing in situ visualization technologies that will be used in our 
proposed usability studies. The first technology that we are developing, which we call Ximage, is 
based on our former work Explorable Images. Because data reduction and different levels of 
approximation in visual transformation are inevitable when conducting visualization at extreme-
scale, we would like to offer uncertainty-aware in situ visualization to users. We believe this 
feature will make in situation visualization more attractive and acceptable by scientists. Presently, 
we are still researching how to model uncertainty due to Explorable Image generation. The 
second technology we plan to develop is for supporting the need of studying particle and field 
data together. We have derived a preliminary design for it and will begin its implementation next.

2.4 Proxy Analysis

Milestone 4.a Initial Mini-App Implementation (Year 1–SNL, ORNL) An initial 
implementation of mini-applications based on visualization and in situ workloads.
Expected Completion: FY15, Q4 Status: Preliminary work

Although milestone 4.a was scheduled to be started at the beginning of the project, the majority of 
the work has been postponed in lieu of providing a VTK-m prototype (milestone 1.a), which is on 
the critical path. We plan the majority of the mini-app implementation in FY15, Q4. That said, 
there has been some related work progressing.

Kitware working with Intel has implemented two Mini-Apps to study the ability to parallelize 
common visualization algorithms using multithreading and CPU SIMD vector extensions. 
Kitware implemented multiple structured and unstructured grid contouring (Marching Cubes, and 
Marching Tetrahedra) algorithm variations to determine what approach performs better. This 
work is a good starting point for creating VTK-m based Mini-Apps, and as a reference 
implementation for how to design filters for emerging architectures such as the Xeon Phi.

In preparation for later proxy analysis milestones (and specifically 4.b: Validate Mini-App 
Characteristics in Year 2), we have been familiarizing ourselves with the Oxbow suite of 
application characterization tools and have performed some initial within-node characterization of 
a sequential contouring algorithm in VisIt and a data-parallel contouring algorithm in EAVL, one 
of the predecessor projects to VTK-m. These initial results point the way towards further 



investigation and directions for mini-app implementations – for example, while there is no thread-
level parallelism in VisIt, it was able to make use of integer SIMD arithmetic, while the highly-
parallel EAVL algorithm was not.

3 Other Activities

3.1 Outreach

“Roadmap for Many-Core Visualization Software in DOE,” Jeremy Meredith, GTC Presentation, 
March 2015.

“Visualization Toolkit: Faster, Better, Open Scientific Rendering and Compute”, Robert Maynard 
and Marcus Hanwell, GTC Presentation, March 2015.

“Hands-on Lab: In-Situ Data Analysis and Visualization: ParaView, Calalyst and VTK-m” 
Marcus Hanwell and Robert Maynard, GTC Lab, March 2015.
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